
Towards a Context-Aware and Pervasive Multimodality* 

Manolo Dulva Hina 1,2, Chakib Tadj 1, Amar Ramdane-Cherif 2, and Nicole Levy 2 

1 Université du Québec, École de technologie supérieure, 
1100, rue Notre-Dame Ouest, Montréal, Québec H3C 1K3 Canada 

{manolo-dulva.hina.1@ens.etsmtl.ca, ctadj@ele.etsmtl.ca}  
2 PRISM Laboratory, Université de Versailles-Saint-Quentin-en-Yvelines, 

45, avenue des États-Unis, 78035 Versailles Cedex, France 
{rca, nicole.levy}@prism.uvsq.fr 

Abstract. Pervasive multimodality aims to realize anytime, anywhere comput-
ing using various modes of human-machine interaction, supported by various 
media devices other than the traditional keyboard-mouse-screen used for data 
input and output. To achieve utmost efficiency, the modalities for human-
machine interaction must be selected based on their suitability to a given inter-
action context (i.e. combined user, environment and system contexts) and the 
availability of supporting media devices. To be fault-tolerant, the system should 
be capable of finding replacement to a failed media device. This paper presents 
a paradigm of such computing system. Proposed solutions to some technical 
challenges including the establishment of relationships among interaction con-
text, modalities and media devices, and of the mechanism for the system’s in-
cremental acquisition of knowledge on various interaction contexts and their 
corresponding selections of suitable modalities are presented in this work. 

1   Introduction 

In the very near future, we shall be living in a society in which pervasive computing 
(also known as ubiquitous computing) [1, 2] will no longer be a luxury but a way of 
life. In such a computing system, a user can continue working on a computing task, 
using various applications, whenever and wherever he wants. The infrastructure of 
pervasive computing [3] will be available and the applications seamlessly adapting 
accordingly to the user’s context [4] and available resources. Multimodality [5], on its 
part, promotes the use of different modalities for human interaction (i.e. data entry 
and data output), the choice of modality being a function of the user’s context. Media 
devices, subject to their availability and suitability to context, may be selected to 
support then chosen modality. Hence, pervasive multimodality shall be a computing 
trend of the future, one in which computing adapts to the needs of the users, including 
those with disabilities. To further enhance its functionalities, a pervasive multimodal 
system may be designed with machine learning [6, 7] capability, a mechanism in 
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which the system “learns” from previous experiences to improve its performance, 
promotes autonomy and is itself fault-tolerant. The design of such system is filled 
with technical challenges that need optimal solutions. This paper presents our view 
and proposed solutions to the challenges to achieve pervasive multimodality. The rest 
of this paper is structured as follows. Works related to ours are listed in section 2. 
Section 3 lists down some of the technical challenges and our proposed solutions. The 
main contents, the matters related to interaction context and multimodality, and the 
context learning and adaptation are discussed in sections 4 and 5. The paper is con-
cluded in section 6.  

2   Related Work 

Multimodality advocates the use of various modes for human interaction (data in-
put/output) with a computer beyond the traditional keyboard-mouse-screen input and 
output devices. A few recent works in this domain include an interface for wireless 
user interface [5] and the static user interface [8]. Multimodality also refers to the 
fusion of two (or more) modalities. Sample works in this area include the combined 
speech and pen inputs [9] and the combined speech and lips movements [10].  Multi-
modality, as a domain in human-computer interface, aims at providing increased 
usability to the user, such that a modality that is weak for a given setting may be re-
placed by another but more appropriate modality. For example, using speech instead 
of mouse and keyboard as input device/s is more suitable for users doing computing 
in a moving car. Compared with others, our research goal on pervasive multimodality 
is to realize anytime, anywhere computing where users will use modalities that are 
suitable to their given context. 

In [4], Coutaz et al explained the importance of context. Research has gone a long 
way since Dey provided the basic definition of context [11] as applied in context-
aware computing [12]. Rey and Coutaz updated the definition in [13] and coined the 
term “interaction context” (IC) to mean the user, the environment and the system’s 
contexts. Our work focuses on the IC in pervasive multimodal computing and consid-
ers both static and dynamic context data, including sensed, derived and profiled con-
text information. There has been an active research going on in pervasive and mobile 
computing. The Prism model in Project Aura [14], for example, demonstrates a user’s 
moving aura (i.e. user’s profile and task). Our work has extended this concept by 
considering an incremental learning system in which acquired knowledge becomes 
part of pervasive information, along with user’s profile, task and preferences. We 
inject the features of adaptability and autonomy into the system via machine learning. 

3   Technical Challenges 

Here, we list down some software engineering challenges of pervasive multimodality 
via technical requirements that need to be addressed and also describe our approach. 
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Our goal is to model a pervasive computing system that senses its current IC and 
chooses appropriate modalities and their supporting media devices. The design of 
such a system needs to address the key requirements cited below: 

 

Requirement 1: Provide a relationship between a modality and an IC (i.e. combined 
user, environment and system contexts) and a relationship between a modality and 
media devices. Given that the application domain is multimodality, what parameters 
constitute the user, environment and system contexts? On what basis a specific mo-
dality is considered suitable to an IC? How media devices are selected to support a 
particular modality? 
 

Requirement 2: Provide a mechanism that allows the system to acquire incremental 
acquisition of knowledge related to IC-modalities-media devices scenario. What ma-
chine learning methodology should be adopted if the system is to learn scenarios 
incrementally? How does it acquire knowledge on new IC scenarios? 
 

Requirement 3: Provide a mechanism allowing the system to be fault-tolerant on 
failed media devices. If a chosen media device fails (i.e. absent or not functional), 
what media device replacement gets selected, and on what ground? 

The technical challenges are addressed by the proposed solutions given below. 
 

Proposed solution to requirement 1: The modalities for human-machine interaction 
are manual, visual and vocal both for data input and output (details in next section). 
An IC is composed of user, environment and system context parameters that are all 
related to modalities. The relationship to consider is how specific modality becomes 
suitable to an IC parameter and by how much (i.e. high, medium, low or inappropri-
ate). To that effect, all media devices must be grouped in such a way that a relation-
ship between modalities and media group may be established.  
 

Proposed solution to requirement 2: We adopt machine learning; the system is 
trained with scenarios (i.e. interaction content – modalities) and each one learned is 
stored in a repository as an exemplar. Using case-based reasoning with supervised 
learning, a new IC (pre-condition scenario) is compared against stored exemplars; if a 
match is found, the corresponding post-condition scenario is implemented. Other-
wise, a new case is considered for learning.     

Proposed solution to requirement 3: We aim to design an autonomous, adaptive 
and fault-tolerant system. In case of faulty media device, a replacement is searched. 
Media devices are ranked by priority. The faulty top-ranked device is automatically 
replaced by second-ranked device (if available) then by the next-ranked device, and 
so on until a replacement is found. When replacement is not possible, the currently-
chosen optimal modality is up for replacement.  

4   Interaction Context and Multimodality 

An interaction context, IC = {IC1, IC2,…, ICmax}, is a set of all possible interaction con-
texts. At any given time, a user has a specific interaction context i denoted as ICi, 1 ≤ i 
≤ max, which is composed of variables that are present during the conduct of the 
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user’s activity. Each variable is a function of the application domain which, in this 
work, is multimodality. Formally, an IC is a tuple composed of a specific user context 
(UC), environment context (EC) and system context (SC). An instance of IC is given 
as:  
                                                  mlki SC  EC   UC IC ⊗⊗=                                               (1) 
where 1 ≤ k ≤ maxk, 1 ≤ l ≤ maxl, and 1 ≤ m ≤ maxm, and maxk, maxl and maxm = 
maximum number of possible user contexts, environment contexts and system con-
texts, respectively. The Cartesian product (symbol: ⊗) denotes that IC yields a spe-
cific combination of UC, EC and SC at any given time. 

The user context UC is composed of application domain-related parameters that de-
scribe the state of the user during his activity. Any specific user context k is given by: 

                                                  ICParam  UC kx

kmax

1 x k
=
⊗=                                               (2) 

where ICParamkv = parameter of UCk, k = the number of UC parameters. Similarly, any 
environment context ECl and system context SCm are specified as follows: 

                                                    ICParam  EC ly

lmax

1 y l
=
⊗=                                                (3) 

                                                   ICParam  SC mz

mmax

1  zm
=
⊗=                                               (4) 

As stated, multimodality selects the modality based on its suitability to the given 
IC. Here, modality refers to the logical interaction structure (i.e. the mode for data 
input and output between a user and computer). A modality, however, may only be 
realized if there is/are media devices that would support it. Here, a media refers to a 
set of physical interaction devices (and some software supporting the physical de-
vices). With natural language processing as basis, modalities are grouped as follows: 
(1) Visual Input (VIin), (2) Vocal Input (VOin), (3) Manual/Tactile Input (Min), (4) 
Visual Output (VIout), (5) Vocal Output (VOout), and (6) Manual/Tactile Output 
(Mout). Multimodality, therefore, is possible if there is at least one modality for data 
input and at least one modality for data output: 
                         )M  VO  VI(  ) M  VO VI(  Modality outoutoutininin ∨∨∧∨∨=                      (5) 

Accordingly, media devices themselves are grouped as follows: (1) Visual Input 
Media (VIM), (2) Visual Output Media (VOM), (3) Oral Input Media (OIM), (4) 
Hearing Output Media (HOM), (5) Touch Input Media (TIM) (6) Manual Input Me-
dia (MIM), and (7) Touch Output Media (TIM). See Fig. 1. 

 
Fig. 1. The relationship among modalities, media group and physical media devices. 
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For the relationship between modalities and media devices, let there be a function 
g1 that maps a modality to a media group, given by g1: Modality  Media group. This is 
shown in Fig. 1. There is often a case when two or more media devices belong to one 
media group. In such a case, media device selection is determined through their prior-
ity rankings. Hence, let there be a function g2 that maps a media group to a media 
device and the media’s priority ranking, denoted by g2: Media group  (Media device, 
Priority). Sample elements of the two stated functions are: 
g1 = {(VIin,VIM), (VIout,VOM), (VOin,OIM), (VOout,HOM), (Min,TIM), (Min,MIM), (Mout,TOM)} 
g2 =  {(VIM, (eye gaze, 1)), (VOM, (screen, 1)), (VOM, (printer, 1)), (OIM, (speech recognition, 1)),   
(OIM, (microphone, 1)), (HOM, (speech synthesis, 1)), (HOM, (speaker, 2)), (HOM, headphone, 1)), etc.} 

A modality’s suitability to IC is equal to its collective suitability to IC’s individual 
parameters. Instead of binary (suitable or not), our measure of suitability is that of 
high, medium, low or inappropriate. High suitability means that the modality being 
considered is the preferred mode for computing; medium suitability means the mo-
dality is simply an alternative mode, hence, its absence is not considered as an error 
but its presence means added convenience to the user. Low suitability means the 
modality’s effectiveness is negligible and is the last recourse when everything else 
fails. Inappropriateness recommends that the modality should not be used at all.  

If the collective IC is composed of n parameters, then a modality being considered 
has n suitability scores, one score for each parameter. The following conventions are 
adopted:  
1. A modality’s suitability to an IC parameter is one of the following: H (high), M 

(medium), L (low), and I (inappropriate). Mathematically, H = 1.00, M = 0.75,   
L = 0.50, and I = 0.  

2. The modality’s suitability score to an IC is given by:  

                               n
n

1i
imodality rameter context_pa   yScoreSuitabilit ∏=

=
                            (6) 

where i = parameter index and n = total number of parameters. Given the calcu- 
lated value, a modality’s IC suitability is given by: 

                         

0.50  yScoreSuitabilit if I
0.75  yScoreSuitabilit  0.50 if L
1.00  yScoreSuitabilit  0.75 if M

1.00  yScoreSuitabilit if H

 ySuitabilit

modality

modality

modality

modality

modality

<
<≤
<≤

=

=                     (7) 

Fig. 2 shows the algorithm for determining the suitability of modalities to a given 
IC and if multimodality is possible (i.e. equation 5). Checking the possibility of mul-
timodality is done by checking that not all of input modalities (i.e. specified by in-
dexes 1, 2 and 3) are scored “inappropriate”. The same is true for output modalities 
(i.e. specified by indexes 4, 5 and 6). The optimal input modality is chosen from a 
group of input modalities, and is one with the highest IC suitability score. The same 
principle applies to the selection of optimal output modality. Subject to the availabil-
ity of media devices, an optimal modality is ought to be implemented; all other mo-
dalities are considered optional. In the absence of supporting media devices, an alter-
native modality is chosen and is one with the next highest score. The process is re-
peated until the system finds a replacement modality that can be supported by cur-
rently available media devices.  
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If multimodality is possible and the optimal modalities are chosen, then supporting 
media devices are checked for availability. Using function g1, the media group that 
support the chosen modality may be identified. Given that Modality = {VIin, VOin, 
Min, VIout, VOout, Mout} and Media Group = {VIM, OIM, MIM, TIM, VOM, HOM, 
TOM} and that g1: Modality  Media group, then formally, for all media group p, there 
exists a modality q such that the mapping between p and q is in set g1, that is ∀p: 
Media group, ∃q: Modality⏐p → q ∈ g1. Using function g2, the top-ranked media de-
vices that belong to such media group are also identified.  Given function g2, a media 
device d, the priorities p1 and p2 where Priority: N1 (positive numbers excluding 
zero), then the specification for finding the top-ranked device for a media group m is 
∃m: Media group, ∀d: Media device, ∃p1: Priority, ∀p2: Priority ⏐d ● m → (d, p1) ∈ 
g2 ∧ (p1 < p2). 

 
Fig. 2. Algorithm to determine modality’s suitability to IC and if multimodality is possible. 

Let there be a media devices priority table (MDPT) (see Table 1) which tabulates all 
media groups, and each media group’s set of supporting media devices, arranged by 
priority ranking. Let T = {T1, T2… Tmax_table} be the set of MDPT’s. The elements of 
table Tn ∈ T, where n = 1 to max_table, are similar to elements of function g2. Every 
Tn is unique; no two MDPT’s are identical. To create a new table, at least one of its 
elements is different from all other tables that have already been defined. The priority 
ranking of a specific media device may be different in each MDPT. In general, any 
given IC scenario and its suitable modalities is mapped/assigned to a specific MDPT.  

5   Context Learning and Adaptation 

In concept, machine learning (ML) is about programming that optimizes a system’s 
performance through the use of sample data or past experiences. ML is important 
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when human expertise does not exist. Hence, learning rule is formulated from ac-
quired data [7]. A machine is said to have “learned” if its performance in doing a task 
improves with its experience [6]. In this work, the objective of adopting ML is for the 
system to learn various IC’s and each one’s selection of appropriate modalities and 
supporting media devices. Each learned IC is a knowledge learned and is stored in a 
repository (i.e. it becomes an “exemplar”). When the same IC case reoccurs, the sys-
tem automatically adopts the IC case’s corresponding multimodality selections with 
little or no human intervention. 

Table 1. A sample media devices priority table (MDPT). 

 

System knowledge acquisition begins with the establishment of a priori knowl-
edge, those related to IC parameters. An example of an IC parameter is shown in 
Table 2. As shown, the IC parameter is the “user location”. The value of this parame-
ter is deduced from the data taken by a sensor (i.e. a GPS). To formulate this specific 
a priori knowledge, some specified values of latitude and longitude are assigned with 
specific meanings (we call them “conventions”). When sample sensor readings are 
taken, the system compares them with the conventions and concludes whether the 
user is “at home”, “at work” or “on the go”. Then, the expert (i.e. end user) is sup-
plies his perceived suitability score of each modality for each user location conven-
tion (see Table 2(b)). Hence, based on the given value of an IC parameter (e.g. user 
location), the system easily retrieves the suitability score of each modality.  

Table 2. Sample User context parameter – convention and modalities selections 

 

Towards a Context-Aware and Pervasive Multimodality   231



In general, if a system is to become reliable in its detection of the suitability of all 
modalities to a given IC, it needs the most a priori knowledge on context parameters 
as possible. In our work, an end user can add, modify, and delete one context parame-
ter at a time using our layered virtual machine for incremental definition of IC (im-
plemented but not shown here due to space constraints). When all the a priori knowl-
edge are collected and grouped together, it forms a tree-like IC structure, as shown in 
Fig. 3. Every new IC parameter is first classified as either UC or EC or SC parameter 
and is appended as a branch of UC or EC or SC. Then, the conventions of the pa-
rameter are identified as well as the modalities’ suitability scores in each convention. 

There are cases, however, when a certain IC parameter’s value could nullify the 
importance of another IC parameter. For example, the declaration  

user_handicap (blind) nullifies light_intensity() 
states that UC parameter “user handicap” nullifies the EC parameter “light intensity”. 
As such, whatever light intensity value or convention is identified by a sensor is sim-
ply ignored in the calculation of the overall modality’s suitability to the given IC.  

Distinct scenarios that the system had encountered are stored in the knowledge da-
tabase as an exemplar while a current one becomes a “case”. A case is composed of 
three elements: (1) the problem – the IC in consideration, composed of UC, EC and 
SC parameters and their values or conventions, (2) the solution – the final IC suitabil-
ity of each modality, and (3) the evaluation – the relevance score of the solution. 

When the ML component receives a new scenario (i.e. new IC), it converts it into a 
case, specifying the problem. Using the similarity algorithm, it compares the problem 
in the new case against all the available problems/exemplars in the knowledge data-
base. The scenario of the closest match is selected and its solution is returned. The 
evaluation is the score of how similar it is to the closest match. If no match is found 
(relevance score is low), the ML component takes the closest various scenarios and 
regroup and organized them to find the solution of the new case. The user may or 
may not accept the proposed solution. In case of expert refusal, a new case with su-
pervised learning is produced, the problem to the case resolved. Afterwards, ML 
component adds the new case in its knowledge database. This whole learning mecha-
nism is called case-based reasoning with supervised learning.  

 
Fig. 3. The structure of stored IC parameters. 
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Inspired by [15], we modify their similarity scoring scheme to reflect the needs of 
our system. Hence, given a new case (NC) and an individual case stored in the 
knowledge database (MC), the similarity of the problem between the two cases, that 
is NC against MC as denoted by the subscripts, is equal to their similarity in the 
case’s UC, EC and SC and is given by: 

         )SC,Sim(SC  )EC,Sim(EC  ) UC,Sim(UC   MC) Sim(NC, MCNC3
1

MCNC3
1

MCNC3
1 ++=     (8) 

The similarity between the UC of NC against the UC of MC is given by: 

                              
) UC_Par,max(UC_Par

) UC,UC_ParSim(
   ) UC,Sim(UC

MCNC

MCNCi
NCmax

1  i
MCNC

∑
= =                          (9) 

where UC_Pari, i = 1 to max, is the individual UC parameter, max(UC_ParNC, 
UC_ParMC) is the greater between the number of UC parameters between NC and 
MC, and ) UC,Sim(UC_Par MCNCi = MCmax  to1  jmax =  ) UC_Par,Sim(UC_Par

MCjNCi  where 

MCjUC_Par ∈ UCMC and ) UC_Par,Sim(UC_Par
MCjNCi ∈ [0, 1] is the similarity between 

a specific UC parameter i of NC and parameter j of MC.  
For the similarity measures of EC of NC against EC of MC, and the SC of NC 

against SC of MC, the same principle as Equation 9 must be applied, with the formula 
adjusted accordingly to denote EC and SC, respectively, yielding:  

                          
)EC_Par ,max(EC_Par

)EC ,EC_ParSim(
   )EC ,Sim(EC

MCNC

MCNCi
NCmax

1  i
MCNC

∑
= =                         (10) 

                              
)SC_Par ,max(SC_Par

)SC ,SC_ParSim(
   )SC ,Sim(SC

MCNC

MCNCi
NCmax

1  i
MCNC

∑
= =                          (11) 

Equation 8 assumes that the weights of UC, EC and SC are equal (i.e. each is 
worth 33.3%). This figure is not fixed and can be adjusted to suit the need of the 
expert. An ideal case match is a perfect match. However, a score of 90% means that a 
great deal of IC parameters is correctly considered and is therefore 90% accurate. The 
expert, however, decides the threshold score of what is considered as an acceptable 
match. 

When the IC-appropriate modalities are satisfactorily identified, the media devices 
supporting the modalities are checked for availability. If available, the devices are 
simply activated. Otherwise, a replacement is searched. Via MDPT, the media device 
that is next in priority is searched. The process is repeated until a replacement is 
found (see Fig. 4).  Formally, given a failed device d of priority p1, the specification 
for finding the replacement media device drep is ∃m: Media Group, ∀drep: Media 
Device, ∃p1: Priority, ∀p2: Priority⏐(p1 = p1 + 1) ∧ (p1 < p2) ∧ m → (drep, p1) ∈ g2 ● 
drep. 
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Fig. 4. Algorithm for finding replacement to a failed media device. 

6   Conclusion 

In this paper, we presented the major challenges in designing the infrastructure of 
pervasive multimodality. We address those challenges by presenting the elements that 
comprise a given interaction context, the grouping of modalities, media groups and 
media devices. We establish the relationship among them and provide their formal 
specifications. Machine learning is used to build an autonomous and interaction con-
text-adaptive system. Such learning system needs a priori knowledge on context pa-
rameters and the methodology to augment it incrementally. Also, the acquisition of 
various scenarios is presented in this paper. Finally, we demonstrate one fault-tolerant 
characteristic of the system by providing the mechanism that finds a replacement to a 
failed media device. 
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