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Abstract. Pervasive multimodality aims to realize anytime, anywhere comput-
ing using various modes of human-machine interaction, supported by various
media devices other than the traditional keyboard-mouse-screen used for data
input and output. To achieve utmost efficiency, the modalities for human-
machine interaction must be selected based on their suitability to a given inter-
action context (i.e. combined user, environment and system contexts) and the
availability of supporting media devices. To be fault-tolerant, the system should
be capable of finding replacement to a failed media device. This paper presents
a paradigm of such computing system. Proposed solutions to some technical
challenges including the establishment of relationships among interaction con-
text, modalities and media devices, and of the mechanism for the system’s in-
cremental acquisition of knowledge on various interaction contexts and their
corresponding selections of suitable modalities are presented in this work.

1 Introduction

In the very near future, we shall be living in a society in which pervasive computing
(also known as ubiquitous computing) [1, 2] will no longer be a luxury but a way of
life. In such a computing system, a user can continue working on a computing task,
using various applications, whenever and wherever he wants. The infrastructure of
pervasive computing [3] will be available and the applications seamlessly adapting
accordingly to the user’s context [4] and available resources. Multimodality [5], on its
part, promotes the use of different modalities for human interaction (i.e. data entry
and data output), the choice of modality being a function of the user’s context. Media
devices, subject to their availability and suitability to context, may be selected to
support then chosen modality. Hence, pervasive multimodality shall be a computing
trend of the future, one in which computing adapts to the needs of the users, including
those with disabilities. To further enhance its functionalities, a pervasive multimodal
system may be designed with machine learning [6, 7] capability, a mechanism in
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which the system “learns” from previous experiences to improve its performance,
promotes autonomy and is itself fault-tolerant. The design of such system is filled
with technical challenges that need optimal solutions. This paper presents our view
and proposed solutions to the challenges to achieve pervasive multimodality. The rest
of this paper is structured as follows. Works related to ours are listed in section 2.
Section 3 lists down some of the technical challenges and our proposed solutions. The
main contents, the matters related to interaction context and multimodality, and the
context learning and adaptation are discussed in sections 4 and 5. The paper is con-
cluded in section 6.

2 Related Work

Multimodality advocates the use of various modes for human interaction (data in-
put/output) with a computer beyond the traditional keyboard-mouse-screen input and
output devices. A few recent works in this domain include an interface for wireless
user interface [5] and the static user interface [8]. Multimodality also refers to the
fusion of two (or more) modalities. Sample works in this area include the combined
speech and pen inputs [9] and the combined speech and lips movements [10]. Multi-
modality, as a domain in human-computer interface, aims at providing increased
usability to the user, such that a modality that is weak for a given setting may be re-
placed by another but more appropriate modality. For example, using speech instead
of mouse and keyboard as input device/s is more suitable for users doing computing
in a moving car. Compared with others, our research goal on pervasive multimodality
is to realize anytime, anywhere computing where users will use modalities that are
suitable to their given context.

In [4], Coutaz et al explained the importance of context. Research has gone a long
way since Dey provided the basic definition of context [11] as applied in context-
aware computing [12]. Rey and Coutaz updated the definition in [13] and coined the
term “interaction context” (IC) to mean the user, the environment and the system’s
contexts. Our work focuses on the IC in pervasive multimodal computing and consid-
ers both static and dynamic context data, including sensed, derived and profiled con-
text information. There has been an active research going on in pervasive and mobile
computing. The Prism model in Project Aura [14], for example, demonstrates a user’s
moving aura (i.e. user’s profile and task). Our work has extended this concept by
considering an incremental learning system in which acquired knowledge becomes
part of pervasive information, along with user’s profile, task and preferences. We
inject the features of adaptability and autonomy into the system via machine learning.

3 Technical Challenges

Here, we list down some software engineering challenges of pervasive multimodality
via technical requirements that need to be addressed and also describe our approach.
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Our goal is to model a pervasive computing system that senses its current IC and
chooses appropriate modalities and their supporting media devices. The design of
such a system needs to address the key requirements cited below:

Requirement 1: Provide a relationship between a modality and an IC (i.e. combined
user, environment and system contexts) and a relationship between a modality and
media devices. Given that the application domain is multimodality, what parameters
constitute the user, environment and system contexts? On what basis a specific mo-
dality is considered suitable to an IC? How media devices are selected to support a
particular modality?

Requirement 2: Provide a mechanism that allows the system to acquire incremental
acquisition of knowledge related to 1C-modalities-media devices scenario. What ma-
chine learning methodology should be adopted if the system is to learn scenarios
incrementally? How does it acquire knowledge on new IC scenarios?

Requirement 3: Provide a mechanism allowing the system to be fault-tolerant on
failed media devices. If a chosen media device fails (i.e. absent or not functional),
what media device replacement gets selected, and on what ground?

The technical challenges are addressed by the proposed solutions given below.

Proposed solution to requirement 1: The modalities for human-machine interaction
are manual, visual and vocal both for data input and output (details in next section).
An IC is composed of user, environment and system context parameters that are all
related to modalities. The relationship to consider is how specific modality becomes
suitable to an IC parameter and by how much (i.e. high, medium, low or inappropri-
ate). To that effect, all media devices must be grouped in such a way that a relation-
ship between modalities and media group may be established.

Proposed solution to requirement 2: We adopt machine learning; the system is
trained with scenarios (i.e. interaction content — modalities) and each one learned is
stored in a repository as an exemplar. Using case-based reasoning with supervised
learning, a new IC (pre-condition scenario) is compared against stored exemplars; if a
match is found, the corresponding post-condition scenario is implemented. Other-
wise, a new case is considered for learning.

Proposed solution to requirement 3: We aim to design an autonomous, adaptive
and fault-tolerant system. In case of faulty media device, a replacement is searched.
Media devices are ranked by priority. The faulty top-ranked device is automatically
replaced by second-ranked device (if available) then by the next-ranked device, and
so on until a replacement is found. When replacement is not possible, the currently-
chosen optimal modality is up for replacement.

4 Interaction Context and Multimodality

An interaction context, IC = {ICy, ICy,..., ICmax}, is a set of all possible interaction con-
texts. At any given time, a user has a specific interaction context i denoted as ICi, 1 <1
< max, which is composed of variables that are present during the conduct of the
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user’s activity. Each variable is a function of the application domain which, in this
work, is multimodality. Formally, an IC is a tuple composed of a specific user context
(UC), environment context (EC) and system context (SC). An instance of IC is given
as:

IC; =UC, ® EC, ®SC,, (D
where 1 <k < maxy, 1 <1< max;, and 1 <m < max,,, and maxy, max; and max,, =
maximum number of possible user contexts, environment contexts and system con-
texts, respectively. The Cartesian product (symbol: ®) denotes that IC yields a spe-
cific combination of UC, EC and SC at any given time.

The user context UC is composed of application domain-related parameters that de-
scribe the state of the user during his activity. Any specific user context k is given by:

maxy

UC, = ®71 ICParam,, 2)

where ICParamk = parameter of UCk, k = the number of UC parameters. Similarly, any
environment context ECi and system context SCm are specified as follows:

max |

EC, = y®:1 ICParam 3)
SC,, = @1 ICParam,,, 4)

As stated, multimodality selects the modality based on its suitability to the given
IC. Here, modality refers to the logical interaction structure (i.e. the mode for data
input and output between a user and computer). A modality, however, may only be
realized if there is/are media devices that would support it. Here, a media refers to a
set of physical interaction devices (and some software supporting the physical de-
vices). With natural language processing as basis, modalities are grouped as follows:
(1) Visual Input (V1iy), (2) Vocal Input (VOy,), (3) Manual/Tactile Input (Mi,), (4)
Visual Output (Vly), (5) Vocal Output (VOey), and (6) Manual/Tactile Output
(Myy). Multimodality, therefore, is possible if there is at least one modality for data
input and at least one modality for data output:

Modality = (VIin V VOin ¥ Min ) A (VIow ¥ VOout V' Mout) )

Accordingly, media devices themselves are grouped as follows: (1) Visual Input
Media (VIM), (2) Visual Output Media (VOM), (3) Oral Input Media (OIM), (4)
Hearing Output Media (HOM), (5) Touch Input Media (TIM) (6) Manual Input Me-
dia (MIM), and (7) Touch Output Media (TIM). See Fig. 1.

Modalities Media Group Media Devices
(1) Visual input (Vlin) (1) Visual input (VIM) gye gaze
(2) Visual output (Viouy) (2) Visual output (VQM) creen
(3) Vocal input (VO») (3) Oral input (OIM) Printer o
(4) Vocal output (VOour) (4) Hearing output (HOM) S Speech recognition
(5) Manual input (Min) (5) Touch input (TIM) Microphone

Speech synthesis
Speaker
Headphone
Braille

Touch screen
Overlay Keyboard
Keyboard

Mouse

Virtual mouse
Virtual keyboard
Electronic pen
Stylus

(6) Manual output (Moyt) \ (6) Touch output (TO!
(7) Manual input (MIM)

)

Fig. 1. The relationship among modalities, media group and physical media devices.
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For the relationship between modalities and media devices, let there be a function
g, that maps a modality to a media group, given by g;: Modality = Media group. This is
shown in Fig. 1. There is often a case when two or more media devices belong to one
media group. In such a case, media device selection is determined through their prior-
ity rankings. Hence, let there be a function g, that maps a media group to a media
device and the media’s priority ranking, denoted by g,: Media group = (Media device,
Priority). Sample elements of the two stated functions are:

g = {(VIn,VIM), (Vlou, VOM), (VOin,OIM), (VOout, HOM), (Min, TIM), (Min,MIM), (Mout, TOM)}

g = {(VIM, (eye gaze, 1)), (VOM, (screen, 1)), (VOM, (printer, 1)), (OIM, (speech recognition, 1)),

(OIM, (microphone, 1)), (HOM, (speech synthesis, 1)), (HOM, (speaker, 2)), (HOM, headphone, 1)), etc.}

A modality’s suitability to IC is equal to its collective suitability to IC’s individual
parameters. Instead of binary (suitable or not), our measure of suitability is that of
high, medium, low or inappropriate. High suitability means that the modality being
considered is the preferred mode for computing; medium suitability means the mo-
dality is simply an alternative mode, hence, its absence is not considered as an error
but its presence means added convenience to the user. Low suitability means the
modality’s effectiveness is negligible and is the last recourse when everything else
fails. Inappropriateness recommends that the modality should not be used at all.

If the collective IC is composed of n parameters, then a modality being considered
has 7 suitability scores, one score for each parameter. The following conventions are
adopted:

1. A modality’s suitability to an IC parameter is one of the following: H (high), M
(medium), L (low), and I (inappropriate). Mathematically, H = 1.00, M = 0.75,
L=0.50,and I=0.

2. The modality’s suitability score to an IC is given by:

n
SuitabilityScore o411y = li/ [Tcontext_parameter ; 6)
i=1

where i = parameter index and 7 = total number of parameters. Given the calcu-
lated value, a modality’s IC suitability is given by:

Hif SuitabilityScore,, 4,1y =1.00
Mif 0.75<SuitabilityScore, g,y <1.00
Lif 0.50< SuitabilityScore;,ogyity <0.75

Lif SuitabilityScore;, gy, < 050

(7

Suitability,o gy =

Fig. 2 shows the algorithm for determining the suitability of modalities to a given
IC and if multimodality is possible (i.e. equation 5). Checking the possibility of mul-
timodality is done by checking that not all of input modalities (i.e. specified by in-
dexes 1, 2 and 3) are scored “inappropriate”. The same is true for output modalities
(i.e. specified by indexes 4, 5 and 6). The optimal input modality is chosen from a
group of input modalities, and is one with the highest IC suitability score. The same
principle applies to the selection of optimal output modality. Subject to the availabil-
ity of media devices, an optimal modality is ought to be implemented; all other mo-
dalities are considered optional. In the absence of supporting media devices, an alter-
native modality is chosen and is one with the next highest score. The process is re-
peated until the system finds a replacement modality that can be supported by cur-
rently available media devices.
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If multimodality is possible and the optimal modalities are chosen, then supporting
media devices are checked for availability. Using function g;, the media group that
support the chosen modality may be identified. Given that Modality = {VI;,, VO,
Mi, Vg, VOou, Moy} and Media Group = {VIM, OIM, MIM, TIM, VOM, HOM,
TOM} and that g;: Modality - Media group, then formally, for all media group p, there
exists a modality q such that the mapping between p and q is in set g;, that is Vp:
Media group, 3q: Modality |p — q € g.. Using function g,, the top-ranked media de-
vices that belong to such media group are also identified. Given function g,, a media
device d, the priorities pl and p2 where Priority: N; (positive numbers excluding
zero), then the specification for finding the top-ranked device for a media group m is
Im: Media group, Vd: Media device, 3p1: Priority, Vp2: Priority |d em — (d, pD) €
2 A (p1 <p2).

-
//nitialization
Assignment index i <— 1 to 6 to represent modalities (V.. VOin, Min, VIgu VOous and Moy respectively)
//Evaluate IC suitability of individual modality
Loop i < 1 to modality_max
// Calculate modality’s IC suitability score
Loop j < 1 to parameter_max
// read suitability level of a modality with respect to parameter i
Determine suitability Level(j)
if suitabilityLevel(j) equals
(1) High then score <— 1.00, (2) Medium then score < 0.75
(3) Low then score < 0.50, (4) Inappropriate then score < 0.0
Calculate finalScore = score 1 (I/parameter_max)
If finalScore equals
(1) 1.00 then Suitability < High
(2) 0.75 < finalScore < 1.00 then Suitability < Medium
(3) 0.50 < finalScore < 0.75 then Suitability <— Low
(4) < 0.50 then Suitability <— Inappropriate
Assign modality[i] < Suitability

J\.

>
//check if multimodality is possible
if ((Modality[1] # Inappropriate) OR (Modality[2] # Inappropriate) OR
(modality[3] # Inappropriate))
then input modality = OK else input modality = Failure
If (((modality[4] # Inappropriate) OR (modality[5] # Inappropriate) OR
(modality[6] # Inappropriate))
then output modality = OK else output modality = Failure

// Multimodality is possible if none of input modality and output modality failed
If input modality = OK and output modality = OK then
7/ impl the ch 1alities
// choose the optimal modality for data input and output
optimallnputModality < largest (modality[1], modality[2], modality[3])
optimalOutputModality < largest (modality[4], modality[5], modality[6])
. -

Fig. 2. Algorithm to determine modality’s suitability to IC and if multimodality is possible.

Let there be a media devices priority table (MDPT) (see Table 1) which tabulates all
media groups, and each media group’s set of supporting media devices, arranged by
priority ranking. Let T = {T}, Ts... Tiax wble} be the set of MDPT’s. The elements of
table T, € T, where n = 1 to max_table, are similar to elements of function g,. Every
T, is unique; no two MDPT’s are identical. To create a new table, at least one of its
elements is different from all other tables that have already been defined. The priority
ranking of a specific media device may be different in each MDPT. In general, any
given IC scenario and its suitable modalities is mapped/assigned to a specific MDPT.

5 Context Learning and Adaptation

In concept, machine learning (ML) is about programming that optimizes a system’s
performance through the use of sample data or past experiences. ML is important
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when human expertise does not exist. Hence, learning rule is formulated from ac-
quired data [7]. A machine is said to have “learned” if its performance in doing a task
improves with its experience [6]. In this work, the objective of adopting ML is for the
system to learn various IC’s and each one’s selection of appropriate modalities and
supporting media devices. Each learned IC is a knowledge learned and is stored in a
repository (i.e. it becomes an “exemplar”). When the same IC case reoccurs, the sys-
tem automatically adopts the IC case’s corresponding multimodality selections with
little or no human intervention.

Table 1. A sample media devices priority table (MDPT).

Media Devices

Media Group
Priority = 1 Priority = 2 Priority = 3 o Priority = n

Visual Input Eye Gaze

Microphone,
Oral Input Speech
Recognition

Touch Input Touch Screen Braille Terminal

Virtual Mouse,

Manual Input Mouse, Keyboard Virtual keyboard Electronic Pen Stylus Braille
Visual Output Screen Printer Electronic Projector
. Headphone,
Hearing Output Speaker Speech Synthesis
Touch Output Braille Overlay Keyboard

System knowledge acquisition begins with the establishment of a priori knowl-
edge, those related to IC parameters. An example of an IC parameter is shown in
Table 2. As shown, the IC parameter is the “user location”. The value of this parame-
ter is deduced from the data taken by a sensor (i.e. a GPS). To formulate this specific
a priori knowledge, some specified values of latitude and longitude are assigned with
specific meanings (we call them “conventions”). When sample sensor readings are
taken, the system compares them with the conventions and concludes whether the
user is “at home”, “at work” or “on the go”. Then, the expert (i.e. end user) is sup-
plies his perceived suitability score of each modality for each user location conven-
tion (see Table 2(b)). Hence, based on the given value of an IC parameter (e.g. user
location), the system easily retrieves the suitability score of each modality.

Table 2. Sample User context parameter — convention and modalities selections

s M
(a): User location convention table using GPS values (b): Modality selection based on user location
Convention . . . ion = ion = ion =
Latitude Longitude Meanin: . User location = | User location= | User location =
No. 9 9 Type of Modality Athome Atwork On the go
1 <value;> <value;»> At home Visual Input H H L
Visual Output H H H
2 <valuez> <valuez> At work Vocal Input H H H
Vocal Output H H H
not <values;> | not <valuez>
3 AND not AND not On the go Manual Input H H H
<values;> <valuez>
Manual Output H H H




232 Manolo Dulva Hina, Chakib Tadj , Amar Ramdane-Cherif, Nicole Levy

In general, if a system is to become reliable in its detection of the suitability of all
modalities to a given IC, it needs the most a priori knowledge on context parameters
as possible. In our work, an end user can add, modify, and delete one context parame-
ter at a time using our layered virtual machine for incremental definition of IC (im-
plemented but not shown here due to space constraints). When all the a priori knowl-
edge are collected and grouped together, it forms a tree-like IC structure, as shown in
Fig. 3. Every new IC parameter is first classified as either UC or EC or SC parameter
and is appended as a branch of UC or EC or SC. Then, the conventions of the pa-
rameter are identified as well as the modalities’ suitability scores in each convention.

There are cases, however, when a certain IC parameter’s value could nullify the
importance of another IC parameter. For example, the declaration

user_handicap (blind) nullifies light_intensity()
states that UC parameter “user handicap” nullifies the EC parameter “light intensity”.
As such, whatever light intensity value or convention is identified by a sensor is sim-
ply ignored in the calculation of the overall modality’s suitability to the given IC.

Distinct scenarios that the system had encountered are stored in the knowledge da-
tabase as an exemplar while a current one becomes a “case”. A case is composed of
three elements: (1) the problem — the IC in consideration, composed of UC, EC and
SC parameters and their values or conventions, (2) the solution — the final IC suitabil-
ity of each modality, and (3) the evaluation — the relevance score of the solution.

When the ML component receives a new scenario (i.e. new IC), it converts it into a
case, specifying the problem. Using the similarity algorithm, it compares the problem
in the new case against all the available problems/exemplars in the knowledge data-
base. The scenario of the closest match is selected and its solution is returned. The
evaluation is the score of how similar it is to the closest match. If no match is found
(relevance score is low), the ML component takes the closest various scenarios and
regroup and organized them to find the solution of the new case. The user may or
may not accept the proposed solution. In case of expert refusal, a new case with su-
pervised learning is produced, the problem to the case resolved. Afterwards, ML
component adds the new case in its knowledge database. This whole learning mecha-
nism is called case-based reasoning with supervised learning.

( 1
Interaction Context

System Context

| User Context | Environment Context

| Pary | | Par, | won | Par | Pary, Par, ::: Par
Pary, Par,, :::Pary
Values
Valuey; Valuez Valuez Valuez, Valuez Value Values, Value,
Nullifies
Pary

Suitability Suitability Suitability Suitability Suitability Suitability Suitability Suitability Suitability

scores scores scores scores scores scores scores scores scores
(valueys) of (valuery) of (valueqy) of (valuez;) of (valuey) of (valueyy) of (valuey;) of (valuer) of (valueq) of
modality1 o6 modalitys o6 modalitys 6 modality1 o6 modalitys 6 modalitys 6 modality1 o6 modality1 o6 modality1 o6

Fig. 3. The structure of stored IC parameters.
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Inspired by [15], we modify their similarity scoring scheme to reflect the needs of
our system. Hence, given a new case (NC) and an individual case stored in the
knowledge database (MC), the similarity of the problem between the two cases, that
is NC against MC as denoted by the subscripts, is equal to their similarity in the
case’s UC, EC and SC and is given by:

Sim(NC,MC) = +8im(UCyc, UCyc) + L Sim(ECyc, ECye) +Sim(SCyc,SCyc)  (8)

The similarity between the UC of NC against the UC of MC is given by:
mﬂXNC
2 Sim(UC_Par, ., UCyc)

Sim(UCyc, UCyc) = —=! ’
im(UCyc, UCyc) max(UC_Pan, UC_Pary,) ®

where UC_Par; i = 1 to max, is the individual UC parameter, max(UC_Parnc,
UC_Parpc) is the greater between the number of UC parameters between NC and
MC, and Sim(UC_Par.,UCy,c) = max; Sim(UC_Pa UC_Par; ) where

j=1tomaxyc Tine»

UC_Par; € UCyc and Sim(UC_Par; ., UC_Par; ) € [0, 1] is the similarity between
a specific UC parameter i of NC and parameter j of MC.

For the similarity measures of EC of NC against EC of MC, and the SC of NC
against SC of MC, the same principle as Equation 9 must be applied, with the formula

adjusted accordingly to denote EC and SC, respectively, yielding:

maxNC

> SimEC_Par ., ECyc)

Sim(ECyc, ECpye) = —= 10
(ECxe- ECve) max(EC_Pag, EC_Pan,.) (19)

maxNC
> SimSC_Par.,SCy)
Sim(SCyc, SCyyc) = —= 11
(8Cne-SChic) max(SC_Par, SC_Pary,) (i

Equation 8 assumes that the weights of UC, EC and SC are equal (i.e. each is
worth 33.3%). This figure is not fixed and can be adjusted to suit the need of the
expert. An ideal case match is a perfect match. However, a score of 90% means that a
great deal of IC parameters is correctly considered and is therefore 90% accurate. The
expert, however, decides the threshold score of what is considered as an acceptable
match.

When the IC-appropriate modalities are satisfactorily identified, the media devices
supporting the modalities are checked for availability. If available, the devices are
simply activated. Otherwise, a replacement is searched. Via MDPT, the media device
that is next in priority is searched. The process is repeated until a replacement is
found (see Fig. 4). Formally, given a failed device d of priority p1, the specification
for finding the replacement media device d,, is 3m: Media Group, Vdrep: Media
Device, 3p1: Priority, Vp2: Priority |(p1=pl+1) A (pl <p2) Am — (drep, pl) € g, ®
dyep-



234 Manolo Dulva Hina, Chakib Tadj , Amar Ramdane-Cherif, Nicole Levy

Environment profile

Process repeated for all media group
Available ;

devices

Determine | Selected Get 4 Determine i ~

SeenNum | top-ranked | devices | available top-ranked Available )
F:nedia and media device is Activate
i functional available and device
devices for N "
activation media functional
@ devices > .
Missing or

defective

Selectthis
next-
ranked

device

Scenario’s MDPT Next-ranked
device

available?

Send user
warning
message

End of entry
in MDPT?

Selected
device and
replacements
not available

Fig. 4. Algorithm for finding replacement to a failed media device.

6 Conclusion

In this paper, we presented the major challenges in designing the infrastructure of
pervasive multimodality. We address those challenges by presenting the elements that
comprise a given interaction context, the grouping of modalities, media groups and
media devices. We establish the relationship among them and provide their formal
specifications. Machine learning is used to build an autonomous and interaction con-
text-adaptive system. Such learning system needs a priori knowledge on context pa-
rameters and the methodology to augment it incrementally. Also, the acquisition of
various scenarios is presented in this paper. Finally, we demonstrate one fault-tolerant
characteristic of the system by providing the mechanism that finds a replacement to a
failed media device.
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